Search results

1 – 3 of 3
Article
Publication date: 4 June 2018

Francesco De Luca, Hendrik Voll and Martin Thalfeldt

Exterior shading devices and dynamic shading systems constitute an efficient way to improve energy efficiency and occupants’ comfort in buildings through the reduction of direct…

Abstract

Purpose

Exterior shading devices and dynamic shading systems constitute an efficient way to improve energy efficiency and occupants’ comfort in buildings through the reduction of direct solar heat gains and disturbing glare. The purpose of this paper is to analyse the performance of different types of shading systems, fixed and dynamic, and their influence on the energy consumption and cooling loads for an office building located in Tallinn, Estonia. The scope is to determine the most performative configuration for energy consumption and cooling load reduction for office buildings and to provide designers and developers with the necessary knowledge to increase the performance of their buildings.

Design/methodology/approach

There are many types of fixed shading devices, most of which use rectangular planar elements, the orientation and layout of which depends on the building location and façade orientation. The dynamic shading systems vary on the base of the building occupancy schedules and occupants’ preferences. The paper presents a method to determine the most efficient type and size of fixed shading devices in relation to different windows’ size and orientation, and the quantity of windows panes. At the same time the dynamic shading system using a control algorithm developed by the authors is compared.

Findings

The results show that solar shading is an efficient way to control the energy consumption of office buildings, though with different efficacy by the static systems depending on orientation, window and shading type. Evidence shows that dynamic blind systems have more uniform performance and usually outperform static shading.

Originality/value

The paper compares the performances of different static and dynamic shading devices and systems for the location in Tallinn. The dynamic shading system tested uses a control algorithm developed by the authors. The indications for the energy reduction and cooling loads are a valuable resource for designers and developers to increase the energy efficiency of their buildings.

Details

Management of Environmental Quality: An International Journal, vol. 29 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 12 September 2016

Hendrik Voll, Martin Thalfeldt, Francesco De Luca, Jarek Kurnitski and Timo Olesk

The purpose of this paper is to propose a scientific method to evaluate possible urban layouts of a test building integrating building regulations, natural light standard and…

Abstract

Purpose

The purpose of this paper is to propose a scientific method to evaluate possible urban layouts of a test building integrating building regulations, natural light standard and energy requirements to achieve nearly zero-energy buildings in Estonia. The integration of building regulations, energy requirements and natural light standards is crucial to evaluate the incidence of the surrounding environment when analyzing the energy performance of buildings.

Design/methodology/approach

The paper investigates the variations of the energy consumption of a model building with different orientations and variable urban surroundings configurations for the latitude of Tallinn. The different urban configurations are due to combinations of the different building requirements of fire safety, daylighting and insolation hours that in Estonia affect the layout of residential districts, thus influencing significantly the potential consumption of buildings. Different layouts of surrounding buildings have been chosen all guaranteeing at different degrees the fulfillment of the building requirements for the test building and energy simulations have been run to find the urban layouts that guarantee best performances.

Findings

The outcomes show that the test building interior temperatures and energy performances vary significantly in the different urban planning configurations and for the different orientations, underlining that is strongly recommended to run always energy simulation of building considering their surrounding environment. The conclusions show the principles to integrate the building regulations to achieve nearly zero-energy districts that significantly can improve life quality in the urban environment.

Originality/value

The paper analyze the energy efficiency of buildings with different features and orientations simulating their possible urban environment layouts given by building regulations, and not isolated or as built in “an open field” like most of the existing literature in the field.

Details

Management of Environmental Quality: An International Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 12 September 2016

Francesco De Luca, Hendrik Voll and Martin Thalfeldt

The purpose of this paper is to constitute an efficient way to improve energy efficiency and occupants comfort in buildings through reduction of direct solar heat gains by…

Abstract

Purpose

The purpose of this paper is to constitute an efficient way to improve energy efficiency and occupants comfort in buildings through reduction of direct solar heat gains by exterior shading devices. The shadings orientation and layout depends on the building location and façade orientation, and influence consequently the windows layout. It is still debated which type of window layout is preferable for a specific building location and façade orientation.

Design/methodology/approach

The paper presents a method to determine the most efficient windows’ layout, horizontal or vertical, for shading devices optimization by mean of integrating energy simulations and computational design. A parametric model has been built by visual programming language to simulate, iterate and compare the results.

Findings

The research shows the most efficient layouts of windows to be shaded for three latitudes and locations, and the 16 cardinal directions, to be used by architects and designers. The results show a significant prevalence of the horizontal window type on the south façades but also on the east and west orientations for all the three locations, while the rules of thumb would suggest the vertical layout for the sunrise and sunset façades.

Originality/value

The task of designing exterior shading devices presents two main issues: the shading period selection and the method of calculating its size and shape. The present research uses the innovative method Shaderade that existing literature demonstrates superior comparing other more dated like the section method and the solar vectors one.

Details

Management of Environmental Quality: An International Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 3 of 3